If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+16X-1728=0
a = 1; b = 16; c = -1728;
Δ = b2-4ac
Δ = 162-4·1·(-1728)
Δ = 7168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7168}=\sqrt{1024*7}=\sqrt{1024}*\sqrt{7}=32\sqrt{7}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-32\sqrt{7}}{2*1}=\frac{-16-32\sqrt{7}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+32\sqrt{7}}{2*1}=\frac{-16+32\sqrt{7}}{2} $
| 0.005(3k)=(0.1150)k | | −6(r−2)−12=30 | | 4(n-9)=-28 | | 4x-6=10x- | | -12n²+7n³-n⁴=(√8/3) | | -5x+6+9x+10=20 | | q=4/5(q+10) | | q=4/5(q+10 | | 5x/4+3/4=7 | | 5x-1=6x=2 | | x/3+35=5 | | 5-3x=-17 | | 10x15=5x10 | | (x-1)²+2x(x-3)+3= | | 4–2y-y=12 | | 21+6x=-15 | | 9x+1=0x+6 | | 10+5=15x2 | | 5(x−3.2)=60 | | 10+5=50x2 | | -8-4x+7x=-17 | | 2a+7=4a-13 | | 4h-10+2h=4-2/3(6h-9) | | 3=3/4(b+8) | | 4x+38=x+59 | | 3x+5x+20=100 | | x+39=5x+31 | | (x-60)+(x-20)+(x-40)=360 | | 6x+77=17x | | 2x+71=9x+64 | | -5x+8+4x=9 | | 6x+7=332 |